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Abstract
To solve the problem that the cost function of the classic free-form deformation (FFD) cannot simulate transformation field of
images with large elastic deformation or local distortion in image registration better, and to increase the registration accuracy
and robustness, a new non-rigid image registration method based on the classic hierarchical FFD is proposed. Since the
smooth term has a significant influence on registration accuracy, and its coefficient is not easy to be controlled in the classic
hierarchical B-spline based FFD, a L2-regularization term with faster and more stable optimization is introduced in the cost
function of the proposed model. By coordinating the coefficients of this regularization term and the smooth term, this novel
L2-regularized FFDmodel is able to solve the problem of low registration accuracy caused by strong smooth constraint while
maintaining the images topologies. The introduced L2-regularization term can impose a spatial constraint on the control
lattices transformation field, and the over-registration problem can be suppressed to a certain extent, so it can register the
images with local large distortion. A series of registration experiments of natural images and medical images show that the
new method has an obvious advantage over the classic model in registration accuracy measured by mean square error.

Keywords Non-rigid image registration · B-spline · Free-form deformation · L2-norm

1 Introduction

Image registration is a hot topic in image processing and
has been widely used in many fields, such as cartography,
medical image analysis and computer vision [1]. At present,
there are multiple categories of image registration methods.
The most common is based on the feature spaces. According
to the different feature spaces, registration methods can be
divided into two types: feature-based registration and pixel-
based registration.

The feature-based registration, such as SIFT (scale-
invariant feature transform) [2], ICP (iterative closest point)
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[3] and SURF (speeded up robust features) [4], is efficient
in general. However, due to the part of the extracted image
information used, these methods cannot provide reliable
information in images, and registration accuracy, and robust-
ness will be affected.

In pixel-based methods, physical model-based methods,
such as linear elastic model, viscous fluid model and optical
flow model, are frequently used. Thirion [5] proposed the
classic Demons registration method based on optical flow
model in 1998. Later, the researchers improved the Demons
method for accuracy and efficiency, such as Active Demons
[6], Multi-scale Implementation Active Demons (MIAD) [7]
and SIFT-Demons [8]. Pock and Urschler [9] proposed a TV-
L1 algorithm based on the optical flow field model in 2007,
which provides a accurate registration result.

Thin plate spline [10] and the B-spline-based free-form
deformation registration method [11] belong to linear elastic
model, but the former cannot handle the local transforma-
tion as good as the latter. Rueckert et al. [11] were the first
researchers to introduce the B-spline method, for sampling
[12,13], into image registration. They applied the uniform
multi-level B-spline method proposed by Lee and Wolberg

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-018-1274-0&domain=pdf


Signal, Image and Video Processing

[14] for scattered data interpolation [15] to the non-rigid reg-
istration of breast MRI, and obtained good results. Some
of the follow-up methods were mainly based on certain
improvements in this method. For example, Schnabel and
Rueckert [16] proposed a non-uniform multi-level FFD to
improve the efficiency. Oliveira et al. [17] introduced an
enhanced B-spline methodology to align plantar pressure
image sequences simultaneously in time and space.

Although the classic FFD registration method based on
uniform B-spline can achieve good results [11], it is hard
to get accurate results in the images with both large local
deformation and global deformation [16]. When the smooth
term in cost function is relatively large, the accuracy is low.
While the smoothing term is too small or nearly to 0, an
over-registration occurs, and the image topologies will be
destroyed. Therefore, there are always some areas which
cannot be registered accurately. In this paper, we propose
a multi-level B-spline-based FFD for non-rigid image reg-
istration by introducing a L2-regularization term, which can
check and balance the effect of the smooth term and improves
the registration accuracy. In addition, the L2-norm can well
avoid over-fitting and reducing the errors, so that the topolo-
gies can be maintained and the robustness is enhanced.

2 Classic FFD based onmulti-level B-spline

2.1 The Classic Hierarchical FFDModel

The images to be registered can be either natural images
or medical images. Under normal situation, there are both
rigid transformation and non-rigid transformation among
them. Therefore, the transformation model is divided into
two parts, namely global transformation and local transfor-
mation. Assuming the global transformation is Tglobal and the
local transformation is Tlocal, then the total transformation T
is:

T (x, y) = Tglobal(x, y) + Tlocal(x, y) (1)

(1) Global Transformation: For 2D image I(x,y), the global
transformation uses an affine transformation with 6 degrees
of freedom to describe the rigid transformation between the
two images, such as rotation and zooming. The transforma-
tion function can be written as:

Tglobal(x, y) =
(

θ11 θ12
θ21 θ22

)(
x
y

)
+

(
θ13
θ23

)
(2)

The setΘ consisting of 6 elements θ11, θ12, . . . , θ23 is the
coefficient matrix of the affine transformation, which param-
eterizes the transformation model. For 3D image I(x,y,z), the
coefficient matrix has 12 elements, so the affine transforma-

tion has 12 degrees of freedom. The transformation function
can be written as:

Tglobal(x, y, z) =
⎛
⎝ θ11 θ12 θ13

θ21 θ22 θ23
θ31 θ32 θ33

⎞
⎠

⎛
⎝ x

y
z

⎞
⎠ +

⎛
⎝ θ14

θ24
θ34

⎞
⎠ (3)

(2) Local Transformation: Affine transformation can only
describe the global rigid deformation of an image, therefore
we need to use other methods to describe the local non-rigid
deformation. The classic FFD based on multi-level B-spline
has been proved a powerful tool for describing local defor-
mation [18]. The basic principle of FFD is to simulate the
transformation by manipulating the control grid covering the
image. For a 2D image, assuming a uniform control grid with
a resolution of nx ×ny is provided, and a B-spline-based FFD
can be written as:

Tlocal(x, y) =
3∑

k=0

3∑
l=0

Bk(s)Bl(t)φ(i+k)( j+l) (4)

where i = �x/nx�−1, j = y/ny�−1, s = x/nx −�x/nx�,
t = y/ny − �y/ny� and, for u∈[0,1)
{
B0(u) = (1 − u)3/6, B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u + 1)/6, B3(u) = u3/6

(5)

This model can also be expressed in matrix form. Assum-
ing the transformation model isD, the control point matrix is
Ψ , and the constantmatrix isM, thenEq. (4) can be expressed
as:

D = [
s3 s2 s 1

]
MΨMT [

t3 t2 t 1
]T

(6)

where

M = 1

6

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤
⎥⎥⎦ ,

Ψ =
⎡
⎢⎣

φi j · · · φi( j+3)
...

. . .
...

φ(i+3) j · · · φ(i+3)( j+3)

⎤
⎥⎦ (7)

B-spline has a good property of controlling local trans-
formation, when a control point changes, only affecting
the transformation in its neighborhood. We choose the
multi-level B-spline as the transformation model, and select
appropriate hierarchical grades for non-rigid registration.
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Let Φ1, Φ2, . . . , ΦL denote the B-spline control grids
from the first level to the Lth level, and the grid resolution is
increasing by 2 times. Each level of control grid Φp defines
a local transformation function T p

local of this level, and its
expression is given by Eq. (13). Therefore, the local transfor-
mation model Tlocal(x, y) based on the multi-level B-spline
can be written as:

Tlocal(x, y) =
L∑

p=1

T p
local(x, y) (8)

According to Eq. (6), Eq. (8) can also be expressed in
matrix form. If the transformation model isDlocal and the pth
control point matrix is Ψ p, then Eq. (8) can be expressed as:

Dlocal = [
s3 s2 s 1

]
M

⎛
⎝ L∑

p=1

Ψp

⎞
⎠MT [

t3 t2 t 1
]T

(9)

In this way, local transformations are described by a series
of hierarchical B-spline-based FFD models from coarse to
fine, as shown in Eqs. (8) and (9).

2.2 Cost function of the classic FFDmethod

FromEq. (10), we can see that the registration transformation
T is composed of global rigid transformation and local non-
rigid transformation. Let I(x,y) be the moving image, and
I (xo, yo) be the fixed image, then the cost function can be
written as:

C = Csimilarity(I (xo, yo), T (I (x, y))) + λCsmooth(T ) (10)

Csimilarity is the similarity measure. For the single-mode
images, to reduce the complexity, we choose the sum of
squared differences (SSD) or the sum of absolute differences
(SAD) as the similarity measure.

Csmooth is the smooth constraint term, and the coefficient
λ is used to adjust its weight in the formula. In 2D images,
this term is expressed as:

Csmooth = 1

Ω

∫ X

0

∫ Y

0

(
∂2T

∂x2

)2

+
(

∂2T

∂ y2

)2

+ 2

(
∂2T

∂xy

)2

dx dy. (11)

where Ω represents the area of the image domain. Corre-
spondingly, the expression in 3D images is:

Csmooth = 1

V
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0

∫ Y

0
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0
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+ 2

(
∂2T
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∂2T

∂zx

)2

dx dy dz.

(12)

where V represents the volume of the image domain.
The smooth constraint onlyworks on local non-rigid trans-

formation and has no effect on global affine transformation.

3 LFFDmodel for registration

3.1 Limitation of the Classic FFDMethod

The classic FFDmethod has been proved reliable to a certain
extent, but it still has an obvious limitation. Through a large
number of experiments, it has been found that this method
cannot deal with the images with large local deformation or
large distortion, and cannot simulate the transformation field
well, so it cannot to get more accurate results. The limitation
of the classic FFDmethod will be explained in detail by a set
of experimental results shown as follows.

Figure 1a, b shows the moving image and fixed image
of the liver MRI with a size of 256 × 256. Figure 1c is the
registration result of the classic FFD method, and its cor-
responding parameters are set as follows: SAD is used as
similarity measure, number of B-spline levels is 3, the initial
control point spacing is 32×32, the coefficientλ is set to 0.01.
Figure 1d shows the initial difference image between the
moving image and fixed image. Figure 1e shows the differ-
ence image between the registration result and fixed image.

From the registration results, we can see that the classic
FFD performs well in the global non-rigid transformation,
but bad in the local transformation. The red circles in the
liver images highlight the region with large deformation, and
the structure in the circles is extremely irregular in shape.
By observing the two difference images, we can conclude
that the result obtained by the classic FFD is barely satisfac-
tory, and there is a large room for improvement in the local
transformation.

In the above experiments which were tested with differ-
ent values of λ, we conclude that when λ=0.01, we can get
the best result. However, the best result is not satisfactory
enough, in fact, the problem is exactly in the smooth term.
Smooth term can be weighted with λ, but when λ is too small
or taken as 0, it is possible to make transformation field fold.
And for a large value of λ, the smooth constraint is too strong,
resulting in decreased accuracy. Taking a compromise value
of λ, we can only get a compromise effect, just like Fig. 1c
shows. This is the main reason why less methods are pro-
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Fig. 1 Registration results of liver MRI using classic hierarchical FFD. a Moving image, b fixed image, c registration result, d initial difference, e
resulting difference

posed to improve the accuracy of FFD compared to Demons
[5–8] and optical flow [9,19].

3.2 LFFDmodel and analysis

Assuming vector V=[v1, v2, . . . , vn] is an n-dimensional
vector, then the L2-norm of vector V is defined as:

‖V‖2 =
(

n∑
i=1

(vi )
2

) 1
2

(13)

Assuming U is a matrix with m rows and n columns, ui j
denotes the value of element located at ith column jth row,
then the Frobenius norm of matrix U is defined as:

‖U‖F =
⎛
⎝ m∑

i=1

n∑
j=1

(
ui j

)2
⎞
⎠

1
2

(14)

In machine learning, Lp-norm is always used for better
optimization, for example, L1-norm is usually used in sparse
representation for feature selection [20]. L2-norm has the
good property of preventing over-fitting, reducing the error,
making the optimization fast and stable, and imposing spatial
constraints on the model. Therefore, it is a common opti-
mization method for the optimized model to introduce the
L2-norm [18].

For the cost function of the classic FFD method shown in
Eq. (10). To ensure the registration accuracy and balance the
effect of the smooth constraint, we attempt to improve the
classic model as follows:

argmin
Ψ

E(Ψ ) =Csimilarity(I (xo, yo), T (I (x, y)))

+ λL‖Ψ ‖F + λRCsmooth(T )

(15)

where Ψ is the introduced L2 term, and λL is the coefficient
for controlling the L2 item in the cost function. Csmooth(T )

is the smooth constraint term, of which λR is the weight
coefficient.

After analyzing the shortcomings of the classic FFD, it can
be seen that the classic FFD model cannot achieve the accu-
rate registration due to the effect of the smooth term which
should not be too small neither too heavy. The L2 term is

introduced to check and balance the smooth constraint term.
If we minimize ‖Ψ ‖F , we can make every element of Ψ as
small as possible, so we can limit the B-spline control point
as much as possible. Reasonable displacement can play the
role of maintaining the image topologies. By coordinating
the coefficients of this regularization term and the smooth
term, theoretically it is able to solve the problem of low reg-
istration accuracy caused by strong smooth constraint while
maintaining the topologies.

3.3 LFFDmodel validity check

In this section, we chose checkboard synthetic image to
check the validity of the LFFD method. Distort the image
in advance, and then registered it with the original check-
board image.

Analyzing the effect of smooth term, the experimental sce-
nario is designed as two situations. Situation 1: the smooth
coefficient of the classic FFD is set properly to obtain the
best result, then, the L2 term of the control points matrix is
introduced, and finally, we compare and analyze the regis-
tration results. Situation 2: the smooth term coefficient is 0,
and only the similarity measure is used, then the L2 term is
introduced, and finally get the results.

Based on the above, the parameters are set as follows: SAD
used as similaritymeasure, the B-spline levels is 3, and initial
control points spacing is 32 × 32. The above parameters are
fixed. For situation 1, the smooth term coefficient of classic
FFD is set to λ = 10−3, while in the LFFD, λR = 10−3,
and the coefficient of L2-norm is set to λL = 3 × 10−4. For
situation 2, the smooth term coefficient of classic FFD is set
to λ = 0, while in the LFFD, λR = 0, and the coefficient of
L2-norm is set to λL = 3 × 10−4. So that we can check its
validity.

Figure 2c–f shows the results of the four experiments. Fig-
ure 3a is the initial difference image, and Fig. 3b–e shows
the difference between the fixed image and the registration
results of four experiments. Figure 4a–d shows the transfor-
mation fields of the first level of B-spline control grids in
four experiments. Figure 4e–h shows the second level corre-
spondingly. Figure 4i–l shows the third level. Table 1 shows
the objective evaluation criteria.

To see from Figs. 2, 3 and 4, the classic FFD method
can maintain the image topologies only when the smooth-
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Fig. 2 Registration results of checkboard image. a Moving image, b fixed image, c λ = 10−3, d λL = 3 × 10−4, λR = 10−3, e λ=0, f
λL = 3 × 10−4, λR = 0

Fig. 3 Difference images. a Initial difference, b λ = 10−3, c λL = 3 × 10−4, λR = 10−3, d λ = 0, e λL = 3 × 10−4, λR = 0

Fig. 4 Three levels of control points transformation fields for check-
board image. a–d are the first level transformation fields of control grid:
a FFD with λ = 10−3, b LFFD with λL = 3 × 10−4, λR = 10−3, c
FFD with λ = 0, d LFFD with λL = 3 × 10−4, λR = 0. e–h and i
to l are the second and third level transformation fields of control grid
correspondingly

ing constraint is relatively strong. When the smooth term is
0, due to the large spacing, the transformation field of the
first level does not fold, while the second and third levels
fold seriously. With the damaged topologies, the registration
results are unreliable. After introducing the L2 term, using
the same smoothing parameter, it can effectively restrain the
over-registration. The second and third level do not fold, and
the topologiesmaintained, so convictive to prove the validity.

Combining Figs. 2, 3 and 4 and Table 1, we find that
the classic FFD can achieve good results when the smooth
constraint is relatively strong. Based on this, we introduce
L2 term, which can fine-tune the registration result and

has an improvement in accuracy. Since the L2 term can
impose a spatial constraint on the model, so this term makes
those transformed control points reduce the displacement that
should not be produced, thus increasing the registration accu-
racy.

Table 1 shows that LFFD has obvious advantages over
the classic FFD on the mean square error. Therefore, we can
roughly conclude that the result can be better after introduc-
ing the L2 term under these situations.When the smooth term
is 0, the checkboard image will be seriously over-registered,
the topologies destroyed, making results completely unreli-
able. If the L2 term is introduced under this situation, it can
suppress the irrational spatial transformation of control grids,
thus ensuring the topologies without distortion.

After the subjective and objective analysis of the above
image registration experiment results, it is proved that the L2
term can bettermaintain the topologies of the imageswith the
obvious distorted regions such as checkboard. At the same
time, the proposed new method has a certain improvement
in the accuracy compared with the classic FFD method.

3.4 Implementation steps of LFFD

Because of the numerous datum to be optimized in exper-
iment, L-BFGS algorithm is chosen for the LFFD method,
which is an improvement based on the BFGS algorithm. It
solves the problem that require a lot of memory in the BFGS
algorithm. The detailed description of implementation can
be seen in Table 2.

4 Classic FFD based onmulti-level B-spline

To verify the practical effect of the proposed method, nat-
ural images and medical images are used for experiments.
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Table 1 The objective
evaluation criteria

Parameters PSNR (dB) MSE (10−3) Rcc (10−2) MI SSIM (%)

Before registration 54.90 210.8 56.95 0.20 37.17

λ = 10−3 72.72 3.5 98.32 0.70 96.66

λL = 3 × 10−4, λR = 10−3 76.37 1.5 99.70 0.70 98.97

λ = 0 56.90 132.1 0.72 0.31 51.66

λL = 3 × 10−4, λR = 0 62.84 33.8 0.93 0.56 88.25

Bold values indicate the best performance in MSE

Table 2 Implementation for the
L2-regularized FFD method

The L2-regularized FFD method

Step 1: Read the fixed image S and the moving image M

Step 2: Use Gaussian smoothing, then conduct the affine transformation and
return the parameters matrix

Step 3: Set the parameters of the method, including the similarity measure,
coefficients of L2 term and smooth term, initial grid spacing and the
max B-spline levels.Assuming the max levels is m, then start the
transformation:

for i=1:1:m

Make the initial grid of the i th level, calculate the similarity
measure, transform the ith grid

Optimize the energy function with L-BFGS algorithm until the
minimum value is found

Increase the resolution of grid, then conduct the transformation of
the i + 1th level

end

Transform the moving image with the best transformation grid found,
and reconstruct the image by interpolation

For a better comparison, the methods mentioned, such as the
classic FFD, Demons, Active Demons, MIAD, SIFT, SIFT-
Demons and TV-L1, are also selected, and the parameters of
all methods are set to get the best results, respectively.

4.1 Registration results of medical images

In this section, we used the liver MRI shown in Fig. 1 for
non-rigid registration experiments to represent the medical
image with large local deformation, which is different with
rigid MRI method based on affine transformation [21].

The parameters of classic FFD and LFFD are set as fol-
lows. SAD is used as similarity measure, B-spline levels
is 3, and initial spacing is 32 × 32. In the classic FFD,
coefficient of smooth term is set to λ = 10−2, while in
LFFD, λR = 5 × 10−3 and coefficient of L2 term is set
to λL = 8 × 10−4.

Figure 5 shows the registration results of liver MRI using
the above methods. Figure 6 shows the difference between
the fixed image and the registration results. Table 3 is the
objective evaluation criteria.

After the analyzing of Figs. 5 and 6 and Table 3, we
can draw a conclusion. The classic FFD method did well in
the global transformation, but could not handle the strongly

local deformation. The proposed LFFD solved the problems
occurred in the classic FFD, while maintaining the good
result of global transformation, and even had a better per-
formance than TV-L1 in PSNR and MSE.

4.2 Registration results of DIR-Lab 4D CT datasets

Castillo and Castillo [22] have published 10 sets of lung
4D CT cases on the DIR-Lab website [23]. The images are
marked by medical experts, and the mark points are used
as the standard for evaluating the registration effect. Since
the release of the datasets, a lot of scholars and researchers
have used these datasets for evaluating various registration
methods [22,24,25].

In the datasets, each set contained 10 images captured
at different times from one patient, and the max expiratory
phase and the max inspiratory phase image comprise 300
pairs of mark points. In Table 4, TRE (Target Registration
Errors) means the average value of the distances between
300 pairs of mark points, and the data in parentheses are the
standard deviation (STD).

In this section, we take the max expiratory phase and max
inspiratory phase of the case1 for registration, then calculate
the TRE and STD. For convenience, we take the registration
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Fig. 5 Registration results of liver MRI. First row(from left to right): a moving image, b fixed image, c Demons, d AD, e MIAD; second row: f
SIFT, g SIFT-Demons, h TV-L1, i FFD, j LFFD

Fig. 6 Difference between the fixed image and the registration results.
First row (from left to right): a Intial difference, b Demons, c AD;
second row: d MIAD, e SIFT, f SIFT-Demons; third row: g TV-L1, h
FFD, i LFFD

of case1 for a detailed description, and the parameters of
classic FFD and LFFD are set to get the best registration
results, respectively.

After numerous tests, the parameters of the two methods
are set as follows. SAD is used as similarity measure, B-
spline levels is 3, and initial spacing is 32 × 32 × 32. In
classic FFD, coefficient of smooth term is set to λ = 10−4,
while in LFFD, λR = 6× 10−5 and coefficient of L2 term is
set to λL = 2 × 10−5.

We captured the 30th, 50th and 70th slices in direction of
axial for subjective evaluation, and the registration result can
be seen in Fig. 7

To see from Figs. 7 to 8, for the 30th and 50th slices which
have little difference with fixed images, the classic FFD and
LFFD both achieve accurate registration. But when it comes
to the 70th slices, which have big differencewith fixed image,
an over-registration appeared in the classic FFD as the red
circle highlight in Fig. 8h. However, it is restrained in LFFD
in Fig. 8i, and higher accuracy obtained.

Table 4 shows the TRE and STD after registration. It is
clear that the LFFD achieved higher accuracy than the classic
FFD. MLS is regarded as a baseline standard for measuring
the validity of registration, and isoPTV has the best perfor-
mance, which was published at the end of 2016. However,
each of these methods to compare has some limitations on
the application domain and cannot fit into any application
data type. It is clear that the LFFD can improve the accuracy,
and it is a relatively superior method, while it still has dis-
advantages compared to some methods. Although the LFFD
uses all the pixels to conduct registration, it manipulates the
control points, and then uses interpolation to estimate the
displacement of all the pixels, rather than directly calculates.
Therefore its accuracy is inferior to some publish methods.
Besides, the LFFD has strong computational complexity and
low efficiency in 3D image registration.

5 Conclusions

The comparative analysis of the above experiments show
that the LFFD based on B-spline is a relatively effective
registration method than the classic FFD. Meanwhile, this
new method suppressed the over-fitting, well maintained the
topologies and enhanced the robustness. Even though the
efficiency is low when dealing with large datasets like 3D
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Table 3 The objective
evaluation criteria of the 8
methods

Methods PSNR (dB) MSE (10−5) Rcc MI SSIM (%)

Before registration 62.53 3630 0.70 1.51 72.16

Demons 66.55 1440 0.79 1.65 83.88

AD 64.65 2220 0.88 1.71 89.27

MIAD 66.05 140 0.99 1.43 94.40

SIFT 63.52 2890 0.76 1.15 55.60

SIFT-Demons 119.03 0.01 1.00 3.80 100.00

TV-L1 77.56 110 0.99 2.90 98.75

FFD 70.77 540 0.95 1.66 84.82

LFFD 80.22 61.75 0.99 2.16 94.05

Bold values indicate the best performance in MSE

Table 4 The TRE and STD
after registration using various
methods

Case TRE MLS CPP 4DLTM isoPTV FFD LFFD

4DCT1 3.89(2.8) 1.58(1.30) 1.07(1.10) 0.97(1.02) 0.76(0.90) 1.73(0.92) 1.43(0.82)

4DCT2 4.34(3.9) 1.47(1.12) 0.99(1.12) 0.86(1.08) 0.77(0.89) 1.82(1.13) 1.53(1.08)

4DCT3 6.94(4.0) 2.27(1.40) 1.23(1.32) 1.01(1.17) 0.90(1.05) 2.28(1.28) 1.71(1.13)

4DCT4 9.83(4.8) 2.50(1.68) 1.51(1.58) 1.40(1.57) 1.24(1.29) 2.46(1.55) 2.02(1.32)

4DCT5 7.48(5.5) 2.55(1.92) 1.95(2.02) 1.67(1.79) 1.12(1.44) 2.99(1.73) 2.43(1.67)

4DCT6 10.90(6.9) … 1.94(1.72) 1.58(1.65) 0.85(0.89) 3.18(1.77) 2.47(1.50)

4DCT7 11.00(7.4) … 1.79(1.46) 1.46(1.29) 0.80(1.28) 2.99(1.66) 2.34(1.42)

4DCT8 15.00(9.0) … 1.96(2.33) 1.77(2.12) 1.34(1.93) 3.10(2.44) 2.58(2.04)

4DCT9 7.92(3.9) … 1.33(1.17) 1.19(1.12) 0.92(0.94) 2.09(1.29) 1.70(1.19)

4DCT10 7.30(6.3) … 1.84(1.90) 1.59(1.87) 0.82(0.89) 2.62(2.20) 2.16(1.81)

Bold values indicate the best performance with 4DCT datasets

Fig. 7 The 1st column and the 2nd column show themoving images and
fixed images, respectively. The 3rd column and 4th column show the
captured images from registration result using classic FFD and LFFD,
respectively. The 1st row to 3rd row correspond the 30th, 50th and 70th
slices in direction of axial

Fig. 8 The 1st column shows the initial difference images between
moving images and fixed images, the 2nd column and the 3rd column
show the difference betweenfixed images and corresponding slices from
registration results using classic FFD and LFFD, respectively
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images, we can handle this problem with GPU parallel com-
puting methods. However, there are still some drawbacks.
Firstly, it is not as good as isoPTV and other more advanced
registration methods in the accuracy. Secondly, the coeffi-
cient of the L2 term is assigned with empirical value. These
are new topics for our future research.
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