
Distinctive local binary pattern for non-rigid
registration of lung computed tomography
images

Zhulou Cao and Enqing Dong✉
Non-rigid registration of lung computed tomography (CT) images is a
valuable tool for various clinical applications. Many methods such as
bilateral filters and census transform have been used to deal with dis-
continuity of lung motion and local intensity variation. However,
census transform cannot distinguish between low and high contrast
regions, which may lead to negative influence to differential-based regis-
tration methods. A novel distinctive local binary pattern that can generate
distinctive representations of high contrast images is proposed. Combing
the novel local binary pattern, bilateral filters, the inverse-consistent sym-
metrical method and the Lucas–Kanade method, a novel accurate image
registration method is developed. The experiments are performed on the
publicly available 4DCT lung dataset fromDIR-Lab. Comparedwith the
census transform, the proposed distinctive local binary pattern can
achieve relatively better results. The proposed image registration
method greatly improves the accuracy of the classical Lucas–Kanade
method and the bilateral filters-based Demons. In addition, the proposed
registration method is most accurate among all unmasked methods tested
on this dataset.
Introduction: The task of medical image registration [1] is to find the
correct spatial correspondences between two images. This task for
lung computed tomography (CT) images is very challenging owing to
dealing with discontinuity of motion and local intensity variations.
Nevertheless, non-rigid registration of lung CT images has been
proven to be an invaluable tool in many clinical applications such as
image-guided radiation therapy and estimation of lung ventilation.
Therefore, a lot of attention has been paid to non-rigid registration of
lung CT images to improve registration accuracy in recent years.

Lung CT images often have high contrast regions. This can be seen
from Fig. 1b, which plots the surface of the intensities of the entire
CT image in Fig. 1a. Recently, census transform-based methods [2, 3]
have been introduced to align lung CT images. Census transform gener-
ates binary vectors of all intensity differences between each pixel and its
neighbourhood. In this way, census transform yields invariant represen-
tations to local intensity variation. However, this also enhances the
image noise and decreases the contrast of the original CT image as
shown in Fig. 1c. To obtain distinctive representations of images, we
propose a novel local binary pattern named distinctive local binary
pattern (DLBP). The proposed DLBP can generate distinctive represen-
tations of lung CT images as shown in Fig. 1d.
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Fig. 1 Comparison of DLBP and census transform

a Original CT image
b Surface of intensities of original CT image
c Census transform of original CT image
d DLBP of original CT image

Bilateral filters-based Demons [4, 5] can cope well with discontinuity
of lung motion. However, this method suffers from the low accuracy of
registration. This Letter proposes a new accurate registration method that
combines bilateral filters, the proposed DLBP, and the inverse-
consistent symmetrical method, and Lucas–Kanade method.
Proposed DLBP: Let I denote an image, I(x) be the intensity at a point
x. Let Nx represents the neighbourhood of x. DLBP consists of two
binary vectors. The first binary vector is defined as

L1(x) = {g(t− I(x1)), . . . , g(t− I(xp))}, (1)

where τ is the median of {I(x), I(x1), …, I(xp)}, xi∈Nx, i = 1, …, p, and
function g(z) is defined as

g(z) = 1 if z ≥ 0
0 if z , 0

{
.

The second binary vector is expressed as

L2(x) = {f (I(x1)− I(x′1)), . . . , f (I(xm)− I(x′m))}, (2)

where xi ∈Nx, x′i∈Nx, i = 1, …, m, xi and x′i are symmetrical with
respect to the centre point, and function f is defined as

f (z) =

6 = (110)2 if z ≥ T3
5 = (101)2 if z ≥ T2 and z , T3
4 = (100)2 if z ≥ T1 and z , T2
3 = (011)2 if z ≥ −T1 and z , T1
2 = (010)2 if z ≥ −T2 and z , −T1
1 = (001)2 if z ≥ −T3 and z , −T2
0 = (000)2 if z , −T3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

,

where T1, T2, and T3 are thresholds, and 0 < T1 < T2 < T3. Combining (1)
and (2), we can obtain the DLBP as

L(x) = L1(x), L2(x)
{ }

(3)

Proposed image registration method: The proposed image registration
method consists of Lucas–Kanade method, the proposed DLBP, bilat-
eral filters, and the inverse-consistent symmetrical method. We will
discuss these four components sequentially in a 2D space for the sake
of simplicity, although all the experiments of the proposed method
will be performed in a 3D space.

First, we review Lucas–Kanade method. Let us assume that intensities
of objects in subsequent frames are constant over time

I x+ u, y+ v, t + 1
( ) = I x, y, t

( )
,

where I(x, y, t) is the intensity of pixel x = (x, y) in the frame t, and (u, v)
is the displacement of the pixel between consecutive frames t and t + 1.
For small displacements, we can perform a first-order Taylor expansion
yielding

Ixu+ Iyv+ It = 0, (4)

where the subscripts denote partial derivatives. If the displacement is
constant within some neighbourhood, the underdetermined (4) can be
solved using weighted least square method by minimising the following
objective:

E(u, v) = Glk ∗ (Ixu+ Iyv+ It)
2

( )
,

where Glk is the Gaussian filter. Then (u, v) can be obtained by the fol-
lowing linear system:

Glk ∗ I2x
( )

Glk ∗ (IxIy)

Glk ∗ (IxIy) Glk ∗ (I2y )

( )
u
v

( )
= − Glk ∗ (IxIt)

Glk ∗ (IyIt)

( )
(5)

Let I1 and I2 denote the target image and source image, respectively. The
proposed method estimates forward transform (u1, v1) and backward
transform (u2, v2) at the same time.

Then, we compute the DLBP of I1 and I2 using Ili(x, y) = L(Ii(x, y)),
i = 1, 2, where L( · ) denotes the DLBP defined in (3). We differentiate
DLBP from the original image by an extra superscript l.

Next, we calculate the following gradients for the forward transform

Ix(x, y) = ||Il2(x+ 1, y)− Il1(x, y)||1 − ||Il2(x− 1, y)− Il1(x, y)||1
Iy(x, y) = ||Il2(x, y+ 1)− Il1(x, y)||1 − ||Il2(x, y− 1)− Il1(x, y)||1
It(x, y) = | Il2(x, y)− Il1(x, y)

∣∣ ∣∣|1

⎧⎪⎨
⎪⎩ ,

where l1-norm for a vector d = (d1, d2, …, dn) is defined as
| d| ||1 =

∑n
i=1 |di|. With these gradients, we compute forward transform

(u1, v1) by solving the linear system (5). Similarly, we compute



backward transform (u2, v2) with the following gradients:

Ix(x, y) = ||Il1(x+ 1, y)− Il2(x, y)||1 − ||Il1(x− 1, y)− Il2(x, y)||1
Iy(x, y) = ||Il1(x, y+ 1)− Il2(x, y)||1 − ||Il1(x, y− 1)− Il2(x, y)||1
It(x, y) = | Il1(x, y)− Il2(x, y)

∣∣ ∣∣|1
⎧⎨
⎩

After that, we regularise (u1, v1) and (u2, v2) by the following bilateral
filter [5]:

unew(x) = 1

w(x)

∑
x′[Nx

Gx x, x′
( )

GI I(x), I x′
( )( )

Gu u(x), u x′
( )( )

u x′
( )

whereGx, GI, and Gu are Gaussian functions of distances, intensities and
deform fields, respectively, w(x) is a normalisation factor for the neigh-
bourhood Nx, and u = (u1, v1) or u = (u2, v2).

Finally, we apply the inverse-consistent symmetric method [6] to
generate a new forward transform (u′1, v′1)and a new backward trans-
form (u′2, v′2) by the following equations:

(u′1, v
′
1) = 0.5u1, 0.5v1( )o(0.5u−1

2 , 0.5v−1
2 )

(u′2, v
′
2) = 0.5u2, 0.5v2( )o(0.5u−1

1 , 0.5v−1
1 )

{
,

where the notation o denotes the composition of two transforms.
In summary, each iteration of the proposed method consists of calcu-

lation of DLBP, forward and backward transformation estimation, bilat-
eral filtering and inverse-consistent symmetric method.

Experimental results: All the optimal parameters are based on our
experimental results. The proposed method adopts a coarse-to-fine strat-
egy which consists of four levels with iterations {3, 3, 3, 2}, respect-
ively. The window size is initialise with 11, which increases 2 at each
level of image pyramids. The standard deviations of the Gaussian
filters Glk, Gx, GI, and Gu are {11/6, 310, 13/6, 5}, respectively.

The thresholds for DLBP are {2, 10, 800} for T1, T2, and T3, respect-
ively. We calculate partial points in a 5 × 5 × 5 neighbourhood for
DLBP. Let ω1 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and ω2 = {(1, 1, 1),
(1, 1, −1), (1, −1, 1), (1, −1, −1), −ωi = {− x|x∈ωi}, i = 1, 2,
and 2ω1 = {2x|x∈ω1}. Given a point x, then the set of selected
points is Nx = {x+ a|a [ {v1 < (−v1)<v2 < (−v2)< (2v1)}}.
The DLBP of a 3D lung CT image is calculated using the above-
mentioned parameters. One slice of the 3D CT lung and the correspond-
ing slice of the DLBP are shown in Figs. 1a and d.

The experiments are tested on the publicly available 4DCT lung dataset
fromDIR-Lab [7].We focus on the registration of themaximum inhalation
and exhalation phase images. For eachpair of images, 300 anatomical land-
mark pairs have been annotated. In all experiments, target registration error
(TRE) for all landmarks is computed, which are the Euclidean distances
between the landmark positions in the target image and the positions of
the transformed reference landmarks.

Table 1: Mean and standard deviation of target registration errors (mm)
Case
 Proposed
 Lucas–Kanade
 Census transform
 Demons [5]
1
 0.85 ± 0.91
 1.05 ± 1.14
 0.86 ± 0.93
 1.05 ± 0.6
2
 0.82 ± 0.93
 1.09 ± 1.36
 0.85 ± 0.95
 1.08 ± 0.6
3
 0.94 + 1.05
 1.90 ± 2.03
 0.95 ± 1.05
 1.49 ± 0.9
4
 1.32 ± 1.28
 1.88 ± 1.81
 1.39 ± 1.31
 1.90 ± 1.3
5
 1.32 + 1.56
 2.61 ± 3.21
 1.47 ± 1.78
 1.99 ± 1.7
6
 1.15 ± 1.06
 4.42 ± 4.32
 1.28 ± 1.26
 2.36 ± 1.9
7
 1.27 + 1.37
 2.99 ± 2.79
 1.62 ± 2.11
 2.32 ± 1.9
8
 1.53 ± 2.11
 7.14 ± 6.82
 2.12 ± 3.42
 3.58 ± 3.4
9
 1.10 ± 1.00
 2.01 ± 1.77
 1.22 ± 1.15
 1.74 ± 1.0
10
 1.13 ± 1.36
 3.25 ± 3.92
 1.27 ± 1.58
 2.02 ± 2.1
Average
 1.14 ± 1.26
 2.83 ± 2.91
 1.30 ± 1.55
 1.95 ± 0.7
To evaluate our contributions, we implement the classical Lucas–
Kanade. In addition, we replace DLBP and bilateral filters with
census transform. Table 1 summarises the mean and standard deviation
of TRE of these methods. Minimum values are highlighted with bold
letters. For a comprehensive comparison, Table 1 includes the results
of the bilateral filters-based Demons [5]. As shown in Table 1, the pro-
posed method is far better than the classical Lukas–Kanade method.
Compared with census transform, the combination of DLBP and bilat-
eral filters can obtain results that are more accurate. Compared with
existing bilateral filters-based Demons [5], our method can achieve
accurate results with an improvement about 0.81 mm.

The proposed method achieves mean target registration error of
1.14 mm on the 4D CT dataset from DIR-Lab. To best of our knowl-
edge, the top three results of mean target registration errors for
unmasked registration for this dataset are 1.17 [8], 1.34 [2], and
1.41 mm [3]. Therefore, the proposed method is the accurate for
unmasked registration tested on this dataset. This is only slightly
higher than the best result of the masked registration 0.94 mm [9].

The proposed method is implemented using MATLAB on a computer
with a 3.1 GHz Intel® Core i7 Quad-Core Processor. The runtime of the
proposed method for a pair of 256 × 256 × 99 images is about 15 min,
which is 4 to 5 times faster than the bilateral filters-based Demons [5].

Conclusion: A novel local binary pattern and a novel non-rigid regis-
tration method are proposed. The proposed local binary pattern can gen-
erate more distinctive representations of lung CT images than census
transform. The proposed registration method achieves a mean target
registration error of 1.14 mm, which is most accurate of all unmasked
registration methods tested on the 4D CT lung dataset from DIR-Lab.
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